Effects of steam sterilization on thermogelling chitosan-based gels.
نویسندگان
چکیده
A new thermogelling chitosan-glycerophosphate system has been recently proposed for biomedical applications such as drug and cell delivery. The objectives of this work were to characterize the effect of steam sterilization on the in vitro and in vivo end performances of the gel and to develop a filtration-based method to assess its sterility. Autoclaving 2% (w/v) chitosan solutions for as short as 10 min resulted in a 30% decrease in molecular weight, 3-5-fold decrease in dynamic viscosity, and substantial loss of mechanical properties of the resulting gel. However, sterilization did not impair the ability of the system to form a gel at 37 degrees C. The antimicrobial activity of chitosan against several microorganisms was evaluated after inoculation of chitosan solutions and removal of the cells by filtration. It was found that, although chitosan was bacteriostatic against the heat sterilization bioindicator Bacillus stearothermophilus, the bacteria could rapidly grow after separation from the chitosan solution by filtration. This indicated that B. stearothermophilus is an adequate strain to validate a heat sterilization method on chitosan preparations, and accordingly this strain was used to assess the sterility of chitosan solution following a 10 min autoclaving time.
منابع مشابه
Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-beta-glycerophosphate systems.
The effects of steam sterilization and gamma-irradiation on chitosan and thermogelling chitosan-beta-glycerophosphate (GP) solutions containing polyol additives were investigated. The selected polyols were triethylene glycol, glycerol, sorbitol, glucose and poly(ethylene glycol) (PEG). They were incorporated to chitosan solutions prior to sterilization in a proportion ranging from 1 to 5% (w/v)...
متن کاملAbout the Sterilization of Chitosan Hydrogel Nanoparticles
In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at n...
متن کاملبررسی اثر استریلیزاسیون خشک و مرطوب بر سایش لیگاچرکاترهای ارتودنتیک
Background and Aim: Orthodontic ligature cutting pliers are expensive. Methods of sterilization should be safe considering patients' health as well as lifetime of orthodontic pliers. The purpose of this study was to compare the wear of orthodontic ligature cutting pliers after sterilizing with dry heat or steam autoclave. Materials and Methods: In this experimental study, thirty ligature cuttin...
متن کاملImproved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature
The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critical medical devices according to the medical device directive (MDD, 93/42/EG). Biopolymer-containing biomaterials are often highly sensitive towards classical sterilization procedures like steam, ethylene oxide treatment or gamma ir...
متن کاملSox9 Gene Transfer Enhanced Regenerative Effect of Bone Marrow Mesenchymal Stem Cells on the Degenerated Intervertebral Disc in a Rabbit Model
OBJECTIVE The effect of Sox9 on the differentiation of bone marrow mesenchymal stem cells (BMSCs) to nucleus pulposus (NP)-like (chondrocyte-like) cells in vitro has been demonstrated. The objective of this study is to investigate the efficacy and feasibility of Sox9-transduced BMSCs to repair the degenerated intervertebral disc in a rabbit model. MATERIALS AND METHODS Fifty skeletally mature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research
دوره 58 1 شماره
صفحات -
تاریخ انتشار 2001